自主代理可以在新环境中导航而不构建明确的地图吗?对于PointGoal Navigation的任务(“转到$ \ delta x $,$ \ delta y $'),在理想化的设置(否RGB -D和驱动噪声,完美的GPS+Compass)下,答案是一个明确的“是” - 由任务无形组件(CNNS和RNN)组成的无地图神经模型接受了大规模增强学习训练,在标准数据集(Gibson)上取得了100%的成功。但是,对于PointNav在现实环境中(RGB-D和致动噪声,没有GPS+Compass),这是一个悬而未决的问题。我们在本文中解决了一个。该任务的最强成绩是成功的71.7%。首先,我们确定了性能下降的主要原因:GPS+指南针的缺失。带有RGB-D传感和致动噪声的完美GPS+指南针的代理商取得了99.8%的成功(Gibson-V2 Val)。这表明(解释模因)强大的视觉探子仪是我们对逼真的PointNav所需的全部。如果我们能够实现这一目标,我们可以忽略感应和致动噪声。作为我们的操作假设,我们扩展了数据集和模型大小,并开发了无人批准的数据启发技术来训练模型以进行视觉探测。我们在栖息地现实的PointNAV挑战方面的最新状态从71%降低到94%的成功(+23,31%相对)和53%至74%的SPL(+21,40%相对)。虽然我们的方法不饱和或“解决”该数据集,但这种强大的改进与有希望的零射击SIM2REAL转移(到Locobot)相结合提供了与假设一致的证据,即即使在现实环境中,显式映射也不是必需的。 。
translated by 谷歌翻译
3D扫描是一种复杂的多级进程,它产生了由于遮挡,反射,阴影,扫描仪运动,物体表面的特定属性,对象曲线的特定属性,Imperfect重建算法等指向云完成而产生损坏部件的对象的点云。填写对象的缺失部分并获得其高质量的3D表示。现有的完成方法在学术数据集中表现良好,具有预定义的对象类和非常特定的缺陷类型;然而,它们的性能在真实的环境中下降,并在以前看不见的对象类上进一步降低。我们提出了一种在对称物体上表现良好的新颖框架,这些框架在人造环境中普遍存在。与基于学习的方法不同,所提出的框架不需要培训数据,并且能够使用例如在客户3D扫描过程中完成非关键损坏。 kinect,飞行时间或结构化光扫描仪。通过彻底的实验,我们表明拟议的框架在云完成现实世界客户扫描的点云完成时实现了最先进的效率。我们在两种类型的数据集中基准框架性能:正确增强现有的学术数据集和各种对象的实际3D扫描。
translated by 谷歌翻译